Given the following function::
![f(x)=x^4-4x^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/jpa7houn0g7iwq92z8891nwfox51as4wh9.png)
We will find the interval on which the function will be concave down
We need to find the critical points (Minimum, Maximum or Inflection )
We will find f'(x) and f''(x):
![\begin{gathered} f^(\prime)(x)=4x^3-12x^2 \\ f^(\prime)^(\prime)(x)=12x^2-24x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fcwm5ellt0dg9iq09y4tfermsguf2yo6lf.png)
From f'(x) = 0 ⇒ we will get the minimum and the maximum points:
![\begin{gathered} 4x^3-12x^2=0 \\ x^2(4x-12)=0 \\ x^2=0\to x=0 \\ 4x-12=0\to x=(12)/(4)=3 \\ x=\lbrace0,3\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/moamzvb1yk9r8hhsag5nw3sly6ztu61s0m.png)
From, f''(x) = 0 ⇒ we will get the inflection points
![\begin{gathered} 12x^2-24x=0 \\ 12x(x-2)=0 \\ 12x=0\to x=0 \\ x-2=0\to x=2 \\ x=\lbrace0,2\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/edljt2wf30fmjsvcvvecf9c17ewj2qasng.png)
So, we can conclude the following:
There is two inflection points x = 0, x = 2
And the function has a minimum at x = 3
So, as x > 2 the function will be concave up
So, the function from x = 0 to x = 2, will be concave down
So, the answer will be: C. (0, 2)