Given
Linear equations
![\begin{gathered} x-3y+3z=-4...............1 \\ 2x+3y-z=15.......................2 \\ 4x-3y-z=19..................3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v7s6ah4o1g4lsmr6jrpm08te8rni4iq5hr.png)
Find
Value of x , y and z
Step-by-step explanation
from equation 1 , find the value of x in terms of y and z , and then put in equation 2 and 3 .
![\begin{gathered} x-3y+3z=-4 \\ x=-4+3y-3z \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/omnjd9rtneqoa5m7gc5dyraynq0a5hv4l6.png)
now put in equation 2 and 3
![\begin{gathered} 2(3y-3z-4)+3y-z=15 \\ 9y-3z=23.........(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vp4tyuzstbdw498oq9ytb75m3d6ozpc3y4.png)
and
![\begin{gathered} 4(3y-3z-4)-3y-z=19 \\ 9y-13z=35..................(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wp0g9i70vv4ob6aiufyggxnttfq50nqjou.png)
now subtract equation 4 and 5
![\begin{gathered} 9y-7z-9y+13z=23-35 \\ 6z=-12 \\ z=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r7htaidjufiaoqq6adws05pn3325qsbv67.png)
now put value of z in equation 4.
![\begin{gathered} 9y-7(-2)=23 \\ 9y+14=23 \\ 9y=9 \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nbtg2pkewknax812lwh25f19opbdx6j5o7.png)
now put value of y ana z in equation 1.
![\begin{gathered} x-3(1)+3(-2)=-4 \\ x-3-6=-4 \\ x=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qrodhmyeoetma9lb7nw5igojlorqna8yah.png)
Final Answer
Therefore , the ordered triple is {5 , 1 , -2}