215k views
4 votes
I have an advanced trig equation problem i need help with. pic included

I have an advanced trig equation problem i need help with. pic included-example-1

1 Answer

6 votes

In general,


\begin{gathered} \cos (2x)=\cos (x+x)=\cos x\cos x-\sin x\sin x=\cos ^2x-\sin ^2x \\ \Rightarrow\cos (2x)=\cos ^2x-\sin ^2x \end{gathered}

Therefore, the initial equation becomes


\begin{gathered} \Rightarrow9(\cos ^2x-\sin ^2x)=9\sin ^2x+5 \\ \Rightarrow9\cos ^2x=18\sin ^2x+5 \end{gathered}

Furthermore,


\begin{gathered} \sin ^2x+\cos ^2x=1 \\ \Rightarrow\cos ^2x=1-\sin ^2x \end{gathered}

Thus,


\begin{gathered} \Rightarrow9(1-\sin ^2x)=18\sin ^2x+5 \\ \Rightarrow9-9\sin ^2x=18\sin ^2x+5 \\ \Rightarrow27\sin ^2x=9-5=4 \\ \Rightarrow\sin ^2x=(4)/(27) \end{gathered}
\Rightarrow\sin x=\pm\frac{2}{3\sqrt[]{3}}

Finally,


\begin{gathered} \Rightarrow x=\pi n\pm\sin ^(-1)(\frac{2}{3\sqrt[]{3}}) \\ \Rightarrow x=\pi n+0.39510,n\in Z \\ \text{and} \\ x=\pi n-0.39510 \end{gathered}

Finding the values of x on [0,2pi)


\Rightarrow x=0.39510,\pi-0.39510,\pi+0.39510,2\pi-0.39510

Rounding to 3 decimal places,


\Rightarrow x=0.395,2.746,3.537,5.888

The four answers are shown above

User Ishadif
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.