![-2,\operatorname{\mid}(4)/(5)\lvert,\operatorname{\mid}\text{-1}\operatorname{\mid}\text{, }\operatorname{\mid}\text{3.5}\operatorname{\mid}\text{, }\operatorname{\mid}\text{-4.2}\operatorname{\mid}\operatorname{\lparen}\text{1st opt}\imaginaryI\text{on}\operatorname{\rparen}]()
Step-by-step explanation:
![\begin{gathered} Given: \\ |-4.2|,\text{ \mid-4/5\mid, \mid-1\mid, -2, \mid3.5\mid} \end{gathered}]()
The absolute value of a negative number gives a positive number. So we will change the negative numbers in the absolute value to positive. Afterwards, we will order the numbers
![\begin{gathered} |-4.2|\text{ = 4.2} \\ |-(4)/(5)|\text{ = 4/5} \\ |-1|\text{ = 1} \\ |3.5|\text{ = 3.5} \\ \frac{4}{5\text{ }}=\text{ 0.8} \\ \\ 4.2,\text{ 4/5, 1, -2, 3.5} \\ 4.2,0.8\text{, 1, -2, 3.5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ecd4b9cfgom20c6ho3dwmwghv837yi22gw.png)
A negative number is smaller than a positve number
Ordering from lowest to highest:
-2, 0.8, 1, 3.5, 4.5
Rewriting it in the form given initially:
![-2,\text{ \mid}(4)/(5)|,\text{ \mid-1\mid, \mid3.5\mid, \mid-4.2\mid \lparen1st option\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/89kxcohfy44jgtt72kolsybhkns98h4z6g.png)