199k views
5 votes
What is the axis of symmetry and vortex of the problem below

What is the axis of symmetry and vortex of the problem below-example-1
User Junia
by
4.1k points

1 Answer

4 votes

Answer:

The axis of symmetry is x = -2

The vertex is (-2, 5)

Step-by-step explanation:

For a quadratic equation of the form:


y=ax^2+bx+c

The formula for the axis of symmetry is:


A_(symmetry)=-(b)/(2a)

In this case, a = -1 and b = -4

Thus:


A_(symmetry)=-(-4)/(2(-1))=-(4)/(2)=-2

Thus, the axis of symmetry is x = -2

To find the vertex, we need to find the value of y in the axis of symmetry. Then, we need to evaluate the equation for x = -2:


y=-(-2)^2-4(-2)+1=-4+8+1=5

The vertex is (-2, 5)

User Ewindsor
by
4.3k points