45.0k views
5 votes
Using the law of sines, determine whether the given information results in one triangle, two triangles or no triangle at all. Solve any triangle (s) that results. See picture for details

Using the law of sines, determine whether the given information results in one triangle-example-1
User IDurocher
by
8.5k points

1 Answer

5 votes


\begin{gathered} b=8.89 \\ c=10.18 \\ \angle C=74\text{ \degree} \end{gathered}Step-by-step explanation

the law of sines states that


\frac{\sin\text{ A}}{a}=(\sin B)/(b)=(\sin C)/(c)

hence

Step 1

a)let


\begin{gathered} a=8 \\ \angle B=57\text{ \degree} \\ \angle A=\angle49\text{ \degree} \end{gathered}

b) replace to find B


\begin{gathered} \frac{\sin\text{ A}}{a}=(\sin B)/(b)=(\sin C)/(c) \\ (\sin49)/(8)=(\sin(57))/(b) \\ b*sin49=8sin57 \\ b=\frac{8sin\text{ 57}}{sin\text{ 49}} \\ b=8.89 \end{gathered}

c) we can find the angle C usign the fact that the sum of the internal angles in a triangle equals 180,so


\begin{gathered} \angle A+\angle B+\angle C=180 \\ replace\text{ and solve for }\angle \\ 49+57+\angle C=180 \\ \angle C=180-49-57 \\ \angle C=74 \end{gathered}

c) finally, side c


\begin{gathered} \frac{\sin\text{ A}}{a}=(\sin B)/(b)=(\sin C)/(c) \\ \frac{\sin(\text{A})}{a}=(\sin(C))/(c) \\ c*sin(A)=asin(C) \\ c=\frac{asin\text{ \lparen C\rparen}}{sin\text{ \lparen A\rparen}} \\ replace \\ c=(8sin(74))/(sin(49)) \\ c=10.18 \end{gathered}

so, the answer is ( one triangle)


\begin{gathered} b=8.89 \\ c=10.18 \\ \angle C=74\text{ \degree} \end{gathered}

I hope this helps you

Using the law of sines, determine whether the given information results in one triangle-example-1
User Richie Marquez
by
9.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories