ANSWER:
1st option: 5,000kg
Explanation:
Given:
Distance (d) = 0.05 km = 50 m
Force (F) = 3.34x10^-8
Mass of the astronaut (Ma) = 250 kg
G = 6.67 x10^-11 N'm²/kg²
We can calculate the mass of the satellite (Ms) using the following formula:
![F=(G\cdot M_a\cdot M_s)/(d^2)](https://img.qammunity.org/2023/formulas/physics/college/coojtewx62p1px5b9g03v0zc5tu2ugudf4.png)
We substitute each value and solve for the mass of the satellite, just like this:
![\begin{gathered} 3.34\cdot10^(-8)=(6.67\cdot10^(-11)\cdot250\cdot M_s)/(50^2) \\ M_s=(3.34\cdot10^(-8)\cdot50^2)/(6.67\cdot10^(-11)\cdot250) \\ M_s=5007.5\cong5000kg \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/w7q244gd2iw84cek822pa5284c6v093vgi.png)
The mass of the satellite is equal to 5000 kilograms