We are given the expression below to expand:
![(5x-2)^6](https://img.qammunity.org/2023/formulas/mathematics/college/tafos6k1pej6wcz3xlcgbw4dasjjkypxp8.png)
To find the coefficient of the expansion we will need to use the formula below. The formula below indicates the binomial expansion formula
![\sum ^n_(k\mathop=0)C^n_ka^kb^(n-k)](https://img.qammunity.org/2023/formulas/mathematics/college/n6ty11a51zuuwjgytkledmqgkcnll6brxp.png)
This will enable us to find the particular term we want, then we can pick out the coefficient of the term.
The parameters are as follows
n=6,k=0,1,2,3,4,5,6, a=5x i.e the first term and b =-2 i.e the second term
We will then apply parameters to the formula above.
![^6C_0(5x)^6(-2)^0+^6C_1(5x)^5(-2)^1+^6C_2(5x)^4(-2)^2+^6C_3(5x)^3(-2)^3+^6C_4(5x)^2(-2)^4+^6C_5(5x)^1(-2)^5_{_{}}+^6C_6(5x)^0(-2)^6](https://img.qammunity.org/2023/formulas/mathematics/college/n1vdmkrc0fbmglg720j73oszdasv6gtjt9.png)
The expression above gives the interpretation of the binomial formula when the parameters are inserted.
Since we are looking for the coefficient of the x^2 we narrow it down to the term below, gotten from the expression above
![^6C_4(5x)^2(-2)^4](https://img.qammunity.org/2023/formulas/mathematics/college/g0fi04jmpa706ufjjik8rl4g94tuy4q0zz.png)
We then simplify the above to get the required answer
![\begin{gathered} ^6C_4(5x)^2(-2)^4 \\ =(6!)/((6-4)!4!)*25x^2*16 \\ =(6!)/(2!4!)*400x^2 \\ =(6*5*4!)/(2*1*4!)*400x^2 \\ =3*5*400x^2 \\ =6000x^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/28m3l9wz5sskez099al6qs6c6i1cukhxke.png)
Therefore, the coefficient of the x^2 term is
![6000](https://img.qammunity.org/2023/formulas/mathematics/college/ixqa3w11dom7c5pn1ij75w71sjiaqqqb6a.png)