a Remember that
The area of complete circle is equal to
![A=\pi\cdot r^2](https://img.qammunity.org/2023/formulas/mathematics/college/c3j55td07q4b6rf8hxaebd9fh4afvxzn0d.png)
The area of a complete circle subtends a central angle of 360 degrees
so
Applying proportion
Find out the area of the sector with a central angle of 240 degrees
![(\pi\cdot r^2)/(360)=(x)/(240)](https://img.qammunity.org/2023/formulas/mathematics/college/7eizuyv4spdhzdlpyjcnb5rcx2fyfd1iqq.png)
Solve for x
![x=(240\cdot\pi\cdot r^2)/(360)](https://img.qammunity.org/2023/formulas/mathematics/college/6v17ospc5oljdpqq1y5w5fv9d2tv4boev2.png)
Simplify
![x=(2\cdot\pi\cdot r^2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/vau82uwyhj4ill6aka70okfuxf2qwm51bg.png)
that is the area of the sector with a central angle of 240 degrees
Part b
The circumference of the complete circle is equal to
![C=2\pi r](https://img.qammunity.org/2023/formulas/mathematics/high-school/noytl63lm1q06t23qsdkycir68uwxrmxzb.png)
the arc length of the complete circle subtends a central angle of 360 degrees
so
Applying proportion
Find out the arc length by a central angle of 240 degrees
![(2\pi r)/(360)=(x)/(240)](https://img.qammunity.org/2023/formulas/mathematics/college/prswdlpe6i0x62lgt4rq8zxlr2f14o7z0s.png)
solve for x
![x=(4\pi r)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/oamqsd5tcikicoaz8hdvan84gtz853jv86.png)
that is the arc length for a central angle of 240 degrees