Given:
The exponential model is,
![f(x)=557(1.026)^x](https://img.qammunity.org/2023/formulas/mathematics/college/pnnk0b85az9ot2ayvtrhcv1tjp4rjopr74.png)
The function f(x) denotes the population of a country in millions x years after 1968.
a) Put x = 0,
![\begin{gathered} f(x)=557(1.026)^x \\ f(x)=557(1.026)^0 \\ =557(1) \\ =557 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x567skc69jlalf9amwd052sb9znrxyks4p.png)
Answer: Country's population in 1968 was 557 million
b) In the year 1995 the country's population will be,
![\begin{gathered} \text{ In the 1995 year means after 27 years from 1968} \\ \text{For x=27} \\ f(x)=557(1.026)^x \\ =557(1.026)^(27) \\ =557*\: 1.99976 \\ =1113.868535 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ql4c5s2rz05r1reg0e7p83vxy3149cespq.png)
Answer: In the year 1995 the population is 1113.868535 million.