Given:
Account 1 :
Principal amount = $ 4600
Interest = 2%
time = 4 years compounded monthly.
The future value is,
![\begin{gathered} A_1=P(1+(r)/(n))^(nt) \\ A_1=4600(1+(2)/(100*12))^(12*4) \\ A_1=4600(1+0.001666667)^(48) \\ A_1=4982.79 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/x1mxyajd2drfa7xdx3vg8u64n0mqij5b99.png)
Account 2:
Principal amount = $ 3000
Interest = 4%
time = 4 years compounded quarterly.
The future value is,
![\begin{gathered} A_2=P(1+(r)/(n))^(nt) \\ A_2=3000(1+(4)/(100*4))^(4*4) \\ A_2=3000(1+0.01)^(16) \\ A_2=3517.74 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sk06fvdcub6og251a9n6v9pjhkfkx2eh9z.png)
The difference between the future values of both accounts is,
![A_1-A_2=4982.79-3517.74=1465.05](https://img.qammunity.org/2023/formulas/mathematics/high-school/mlyid5mah1yxtjpjo64msngdzxeaj2omvs.png)
Answer: Account 1 is better because the final value is $1465.05 more than the final value of Account 2 after four years.