In this question, we are asked to create a binomial probability distribution table.
The binomial probability applies when an event can either result in success or not, which is the case for being (success) or not a first-generation student.
If the probability of success is p, then the binomial probability distribution P(x) of having x successes out of n events is given by the formula:
![P(x)=C(x,n)\cdot p^x\cdot(1-p)^(n-x)](https://img.qammunity.org/2023/formulas/mathematics/college/6nxqqdx29cxynkae9sk1m7f9dpeq2nhcws.png)
where C(x,n) represents the number of combinations of x elements out of n.
Part A:
In this case, we have:
p = 39% = 0.39
n = 5
Then, the probabilities are:
![\begin{gathered} P(0)=C(0,5)\cdot0.39^0\cdot(1-0.39)^(5-0)=1\cdot1\cdot0.61^5\cong0.0845 \\ \\ P(1)=C(1,5)\cdot0.39^1\cdot(1-0.39)^(5-1)=5\cdot0.39\cdot0.61^4\cong0.2700 \\ \\ P(2)=C(2,5)\cdot0.39^2\cdot(1-0.39)^(5-2)=10\cdot0.39^2\cdot0.61^3\cong0.3452 \\ \\ P(3)=C(3,5)\cdot0.39^3\cdot(1-0.39)^(5-3)=10\cdot0.39^3\cdot0.61^2\cong0.2207 \\ \\ P(4)=C(4,5)\cdot0.39^4\cdot(1-0.39)^(5-4)=5\cdot0.39^4\cdot0.61^1\cong0.0706 \\ \\ P(5)=C(5,5)\cdot0.39^5\cdot(1-0.39)^0=1\cdot0.39^5\cdot1\cong0.0090 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/inklwpzkmqwa5frmhr4yfzqor8w614eu2g.png)