Given:
![\begin{gathered} cos\text{ }\theta=(3)/(5) \\ sin\text{ }\theta<0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rjqlsiw5hf9vrfk8y58hp44ypxxd32rmcz.png)
We will find the following:
A) the quadrant of the angle.
the cosine of the angle is positive in two quadrants the first and the fourth
In the first quadrant, the sine is (+v)
while in the fourth quadrant the sine is (-v)
So, for the given angle, the angle lying in Q4
B) other five trig function values.
The hypotenuse = h = 5
the adjacent = x = 3
The opposite = y = ±√(5^2 - 3^2)= ±√16 = -4
Choose the (-ve) value because the angle lying in Q4
So, the trig functions will be as follows:
![\begin{gathered} sin\text{ }\theta=(opposite)/(hypotenuse)=-(4)/(5) \\ \\ tan\text{ }\theta=(opposite)/(adjacent)=(-4)/(3) \\ \\ sec\text{ }\theta=\frac{1}{cos\text{ }\theta}=(5)/(3) \\ \\ cosec\text{ }\theta=\frac{1}{sin\text{ }\theta}=(5)/(-4) \\ \\ cot\text{ }\theta=\frac{1}{tan\text{ }\theta}=(3)/(-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vqiuptjwwv729a96s2fgifc51nr2j0jg52.png)