183k views
4 votes
Given the cos =3/5 and son of theta is less than 0 state A) the quadrant of the angle and B) other five trig function values

1 Answer

3 votes

Given:


\begin{gathered} cos\text{ }\theta=(3)/(5) \\ sin\text{ }\theta<0 \end{gathered}

We will find the following:

A) the quadrant of the angle.

the cosine of the angle is positive in two quadrants the first and the fourth

In the first quadrant, the sine is (+v)

while in the fourth quadrant the sine is (-v)

So, for the given angle, the angle lying in Q4

B) other five trig function values.

The hypotenuse = h = 5

the adjacent = x = 3

The opposite = y = ±√(5^2 - 3^2)= ±√16 = -4

Choose the (-ve) value because the angle lying in Q4

So, the trig functions will be as follows:


\begin{gathered} sin\text{ }\theta=(opposite)/(hypotenuse)=-(4)/(5) \\ \\ tan\text{ }\theta=(opposite)/(adjacent)=(-4)/(3) \\ \\ sec\text{ }\theta=\frac{1}{cos\text{ }\theta}=(5)/(3) \\ \\ cosec\text{ }\theta=\frac{1}{sin\text{ }\theta}=(5)/(-4) \\ \\ cot\text{ }\theta=\frac{1}{tan\text{ }\theta}=(3)/(-4) \end{gathered}

User Nathan Mills
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories