Answer:

Step-by-step explanation:

To find the average temperature, we will integrate the temperature function over the interval 18 hour period (that is from 0 to 18)
![\begin{gathered} Average\text{ value = }\int_0^(18)(50\text{ + 6t - }(1)/(2)t^2)dt \\ =\int_0^(18)50\text{ dt+ 6tdt - }(1)/(2)t^2dt \\ =[50t\text{ + }(6t^2)/(2)\text{- }(1)/(2)(t^3)/(3)]\text{ interval 0 to 18} \\ =[50t\text{ + 3t}^2\text{ - }(t^3)/(6)]\text{ interval 0 to 18} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p045md0rfw80nlwnvdtqhndf2hlckb5xy5.png)
![\begin{gathered} substitute\text{ the intervals:} \\ =\text{ \lbrack50\lparen18\rparen+ 3\lparen18\rparen}^2\text{ - \lparen}(18^3)/(6))]\text{ - \lbrack50\lparen0\rparen+ 3\lparen0\rparen}^2\text{ - \lparen}(0^3)/(6))]\text{ } \\ =\text{ 900 + 972 - 972 - 0} \\ Average\text{ value }=\text{ 900} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qmv3k37co92k4rpzu4o870ickdd5gtmhv7.png)
The average temperature will be the average value gotten above divided by the time period
