102k views
2 votes
F(x)=x+3/2x^2-6 Find the zeros of the function algebraically

1 Answer

2 votes

To find the zeros of a function f(x), we set f(x)=0 and then solve for x

Here. we have


\begin{gathered} f(x)=x+(3)/(2)x^2-6 \\ \text{ setting }f(x)=0 \\ \Rightarrow(3)/(2)x^2+x-6=0 \\ \text{ multiplying each term by 2} \\ \Rightarrow2((3)/(2)x^2)+2(x)-2(6)=0 \\ \Rightarrow3x^2+2x-12=0 \\ \Rightarrow3x^2+2x=12 \\ \text{ Dividing each term by 3} \\ \Rightarrow x^2+(2)/(3)x=4 \\ \text{ Adding (}(1)/(2)*(2)/(3))^2\text{ =}(1)/(9)\text{to both sides;} \\ \Rightarrow x^2+(2)/(3)x+(1)/(9)=4+(1)/(9) \\ \Rightarrow(x+(1)/(3))^2=(37)/(9) \\ \Rightarrow(x+(1)/(3))=\frac{\pm\sqrt[]{37}}{3} \\ \Rightarrow x=-(1)/(3)\pm\frac{\sqrt[]{37}}{3} \\ \text{ The zeros of f(x) is given as;} \\ \Rightarrow x=-(1)/(3)+\frac{\sqrt[]{37}}{3}\text{ or }x=-(1)/(3)-\frac{\sqrt[]{37}}{3} \end{gathered}

User Ahmed Eid Yamany
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories