Answer:
• Vertex: (5,-2)
,
• Points to the left of the vertex: (3,2) and (4,-1)
,
• Points to the right of the vertex: (7,2) and (6, -1)
Step-by-step explanation:
Given the equation of the parabola:
![y=x^2-10x+23](https://img.qammunity.org/2023/formulas/mathematics/college/oj4k56zo5cm0qfrbg85y3o2li4loyvbn9l.png)
First, determine the vertex:
![\begin{gathered} \text{Axis of symmetry: }x=-(b)/(2a) \\ x=-(-10)/(2*1) \\ x=5 \\ \text{When x=5} \\ y=5^2-10(5)+23=-2 \\ \implies\text{Vertex}=(5,-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yva76ojmbasaz4kkr334sua5fv0xktcmxx.png)
A table of values for the function is given below with the vertex identified:
Thus, we have the graph below:
• Vertex: (5,-2)
• Points to the left of the vertex: (3,2) and (4,-1)
,
• Points to the right of the vertex: (7,2) and (6, -1)