Since angle Cita lies on the 2nd quadrant, then
The value of tan Cita is negative
Let us use the identites
![\begin{gathered} sin^2\theta+cos^2\theta=1\rightarrow(1) \\ tan\theta=(sin\theta)/(cos\theta)\rightarrow(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8z11t5vn5t07fqa60tokm2iyexg71p4fpq.png)
Since sin Cita = 4/5, then substitute it in (1)
![\begin{gathered} ((4)/(5))^2+cos^2\theta=1 \\ (16)/(25)+cos^2\theta=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a9h28i2f1odxoj0scf8b476943fcihasm3.png)
Subtract 16/25 from each side
![\begin{gathered} (16)/(25)-(16)/(25)+cos^2\theta=1-(16)/(25) \\ cos^2\theta=(9)/(25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/su6zoejtsnqo53wvk9vil4g217vb7hkwdt.png)
Take a square root for both sides
![\begin{gathered} √(cos^2\theta)=\pm\sqrt{(9)/(25)} \\ cos\theta=\pm(3)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wg3e1uswgw7gfwrfwyof1t5csjapaw7h22.png)
Since Cita lies in the 2nd quadrant, then its cosine is negative
![cos\theta=-(3)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/i4nfhhmlecpg0tq6h60h2rsw9sk9rndgg6.png)
Now, use identity (2) to find tan Cita
![\begin{gathered} tan\theta=((4)/(5))/(-(3)/(5)) \\ tan\theta=(4)/(5)*-(5)/(3) \\ tan\theta=-(4)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tkuyxcinyd2k3dc0uh25600opw2d62jbxo.png)
The answer is
tan Cita = -4/3