219k views
2 votes
Given that Sinø = 4/5 and lies in quadrant II, find the following value.Tanø

User Joshua Ooi
by
5.3k points

1 Answer

2 votes

Since angle Cita lies on the 2nd quadrant, then

The value of tan Cita is negative

Let us use the identites


\begin{gathered} sin^2\theta+cos^2\theta=1\rightarrow(1) \\ tan\theta=(sin\theta)/(cos\theta)\rightarrow(2) \end{gathered}

Since sin Cita = 4/5, then substitute it in (1)


\begin{gathered} ((4)/(5))^2+cos^2\theta=1 \\ (16)/(25)+cos^2\theta=1 \end{gathered}

Subtract 16/25 from each side


\begin{gathered} (16)/(25)-(16)/(25)+cos^2\theta=1-(16)/(25) \\ cos^2\theta=(9)/(25) \end{gathered}

Take a square root for both sides


\begin{gathered} √(cos^2\theta)=\pm\sqrt{(9)/(25)} \\ cos\theta=\pm(3)/(5) \end{gathered}

Since Cita lies in the 2nd quadrant, then its cosine is negative


cos\theta=-(3)/(5)

Now, use identity (2) to find tan Cita


\begin{gathered} tan\theta=((4)/(5))/(-(3)/(5)) \\ tan\theta=(4)/(5)*-(5)/(3) \\ tan\theta=-(4)/(3) \end{gathered}

The answer is

tan Cita = -4/3

User Shiznatix
by
4.4k points