We have to estimate and then calculate the proportion, in percentage, of the flag is the union area.
We can estimate the area of the union as:
![\begin{gathered} A_u=(7+(5)/(8))\cdot(5+(3)/(8)) \\ A_u=((7\cdot8+5)/(8))\cdot((5\cdot8+3)/(8)) \\ A_u=((56+5)/(8))\cdot((40+3)/(8)) \\ A_u=(61)/(8)\cdot(43)/(8) \\ A_u=(61\cdot43)/(64) \\ A_u\approx43 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aedisufe8z2quu0snkykpyma471v55g5kq.png)
Then, we can now calculate the area of the flag as:
![A_f=19\cdot10=190](https://img.qammunity.org/2023/formulas/mathematics/college/4bqua75ski3mrjxefd8hl63h8n2182p6b1.png)
We can now estimate the percentage as:
![p=(A_u)/(A_f)\approx(43)/(190)\approx(45)/(200)\approx0.225=22.5\%](https://img.qammunity.org/2023/formulas/mathematics/college/1dqf3xt7p2vnmn3mchwy86kgojpzeyrkrm.png)
We can now calculate the values with a calculator as:
![A_u=(61\cdot43)/(64)\approx40.98](https://img.qammunity.org/2023/formulas/mathematics/college/27rkw8rslxao6swk5or8h2hm4fh5rhu9qt.png)
Then, the percentage is:
![p=(A_u)/(A_f)\approx(40.98)/(190)\approx0.2157\approx21.6\%](https://img.qammunity.org/2023/formulas/mathematics/college/g118jln3jlkwiv8lmvcb979rvd7v60j35w.png)
Answer:
The estimated percentage was 22.5%.
The actual percentage is 21.6%.