let lenght of box is:
![l](https://img.qammunity.org/2023/formulas/mathematics/college/2j7e8aab44wfedyfj1h12ictx0hphff5to.png)
width of the box is:
![b](https://img.qammunity.org/2023/formulas/mathematics/college/zemelnbvlkn3xzff1wg7xgbs4kea2l4s98.png)
height of the box is:
![h](https://img.qammunity.org/2023/formulas/mathematics/college/iku1jjuspds3gdtzrscbc9p9sssoyz17py.png)
so the volume of the box is:
![\begin{gathered} \text{volume}=\text{length}* width* height \\ \text{volume}=l* b* h \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gr1tc1ppoul94uz12v6t84pyfu3bq5qe7m.png)
after increasing the length, width and height in four time then:
the new length is:
![4l](https://img.qammunity.org/2023/formulas/mathematics/high-school/tnfd6liqw1kxoxexxu5seeyojbaz1sjp30.png)
the new width is:
![4b](https://img.qammunity.org/2023/formulas/mathematics/college/cc5j3nj7fa6h7dbqrkn9oo0eg9g4mi1k9p.png)
the new height is:
![4h](https://img.qammunity.org/2023/formulas/mathematics/college/sjqp4egqd2s05u6d3twvgf5kcbvrlu3t1b.png)
the increasing box volume is:
![\begin{gathered} \text{new volume =}4l*4b*4h\text{ } \\ =64l* b* h \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ly3jtdqapovsmkv4y8hyfi7vvwh7e8uflr.png)
the new volume is 64 times bigger.