230k views
0 votes
Express the product of (1/5x + 1) and (1/6x + 5/4) as a trinomial in simplest form

User LampShade
by
3.5k points

1 Answer

4 votes

((1)/(5)x+1)((1)/(6)x+(5)/(4))

Use distributive property to remove the parentheses:


(a+b)(c+d)=ac+ad+bc+bd
\begin{gathered} =(1)/(5)x*(1)/(6)x+(1)/(5)x*(5)/(4)+1*(1)/(6)x+1*(5)/(4) \\ \\ Multiplication\text{ }of\text{ }fractions: \\ (a)/(b)*(c)/(d)=(a*c)/(b*d) \\ \\ =(1)/(30)x^2+(5)/(20)x+(1)/(6)x+(5)/(4) \\ \\ =(1)/(30)x^2+(1)/(4)x+(1)/(6)x+(5)/(4) \\ \\ Addition\text{ }of\text{ }fractions: \\ (a)/(b)+(c)/(d)=(ad+bc)/(bd) \\ \\ =(1)/(30)x^2+((6x+4x)/(24))+(5)/(4) \\ \\ =(1)/(30)x^2+(10)/(24)x+(5)/(4) \\ \\ Simplify: \\ =(1)/(30)x^2+(5)/(12)x+(5)/(4) \end{gathered}Then, the product in the simplest form is:
(1)/(30)x^2+(5)/(12)x+(5)/(4)

User Bruno Cloutier
by
3.3k points