Graphing
and we have:
base is the segment PR = 5 - ( -4 ) = 5 + 4 = 9 unitss
height is: 3 units
then area is

for the perimeter, we use the distance between two points to find the required sides:
for segment QR
![\begin{gathered} QR=\sqrt[]{(x2-x1)^2+(y2-y1)^2} \\ QR=\sqrt[]{(5-(-1))^2+(-4-(-1))^2} \\ QR=\sqrt[]{(5+1)^2+(-4+1)^2} \\ QR=\sqrt[]{6^2+(-3)^2} \\ QR=\sqrt[]{36+9} \\ QR=\sqrt[]{45}=3\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nkxjjov5ki0xcteytgd3w9p2tucde4fbc4.png)
For segment PQ:
![\begin{gathered} PQ=\sqrt[]{(-1-(-4))^2+(-1-(-4))^2} \\ PQ=\sqrt[]{(-1+4)^2+(-1+4)^2} \\ PQ=\sqrt[]{3^2+3^2} \\ PQ=\sqrt[]{9+9} \\ PQ=\sqrt[]{18}=3\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zkujv4hleuncra5zowt3gfia28zrjzg762.png)
therefore the perimeter is:
![P=9+3\sqrt[]{5}+3\sqrt[]{2}=19.95](https://img.qammunity.org/2023/formulas/mathematics/college/kffggfy39oo1f7lfleafmjrchjhzy1eh6s.png)
answer: a = 13.5 sq units and p = 19.95 units