You have to find the perimeter of the figure FOX
Given the points F(-3,2), O(5,-1) and X(-1,-4)
The first step is to plot the figure
You have to determine the side lengths of the triangle, to calculate the side lengths you can use the following formula:
![d=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/87agft4bkj7u5ow4h8vn3yzn1g00q311fw.png)
Where
d is the distance between two points on the coordinate system
(x₁,y₁) are the coordinates of one of the points
(x₂,y₂) are the coordinates of the second point.
Side FO
F(-3,2)
O(5,-1)
![\begin{gathered} FO=\sqrt[]{(5-(-3))^2+(2-(-1))^2} \\ FO=\sqrt[]{(5+3)^2+(2+1)^2} \\ FO=\sqrt[]{(8)^2+(3)^2} \\ FO=\sqrt[]{73} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mconx1arvd5netrnq5mnb8f0enwnr9h6n0.png)
Side OX
O(5,-1)
X(-1,-4)
![\begin{gathered} OX=\sqrt[]{(5-(-1))^2+(-1-(-4))^2} \\ OX=\sqrt[]{(5+1)^2+(-1+4)^2} \\ OX=\sqrt[]{(6)^2+(3)^2} \\ OX=\sqrt[]{45} \\ OX=3\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2wbcoyyel5addlact5k0qm0m0mvtr37byc.png)
Side XF
X=(-1,-4)
F=(-3,2)
![\begin{gathered} XF=\sqrt[]{(-1-(-3))^2+(2-(-4))^2} \\ XF=\sqrt[]{(-1+3)^2+(2+4)^2} \\ XF=\sqrt[]{(2)^2+(6)^2} \\ XF=\sqrt[]{40} \\ XF=2\sqrt[]{10} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n5ihb76plphdzipfiqvwzxqp2uywuvcpqr.png)
So the side lengths of the triangle are:
FO=√73
OX=3√5
XF=2√10
The perimeter can be calculated as the sum of the lengths of the sides of the figures
![\begin{gathered} P=FO+OX+XF \\ P=\sqrt[]{73}+3\sqrt[]{5}+2\sqrt[]{10} \\ P=21.576\cong21.58 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m6ezf0rxy6y7bv7rlyass6rrojs7ygdibc.png)