89.2k views
1 vote
Can somebody help me with 10-13 ? I don’t know how to do the inverse of the functions

Can somebody help me with 10-13 ? I don’t know how to do the inverse of the functions-example-1

1 Answer

1 vote

Problem N 10

we have the function


f(x)=9+√(4x-4)

Find out the inverse

Let

y=f(x)


y=9+4x-4

step 1

Exchange the variables (x for y and y for x)


x=9+√(4y-4)

step 2

Isolate the variable y


\begin{gathered} x=9+√(4y-4) \\ x-9=√(4y-4) \\ squared\text{ both sides} \\ (x-9)^2=4y-4 \\ 4y=(x-9)^2+4 \\ y=((x-9)^2)/(4)+(4)/(4) \\ \\ y=((x-9)^(2))/(4)+1 \end{gathered}

therefore

The inverse function is


f^(-1)(x)=((x-9)^(2))/(4)+1

Problem N 11

we have the function


f(x)=√(6x-8)+5

Find out the inverse

Let

y=f(x)


y=√(6x-8)+5

Exchange the variables


\begin{gathered} x=√(6y-8)+5 \\ isolate\text{ the variable y} \\ x-5=√(6y-8) \\ squared\text{ on both sides} \\ (x-5)^2=6y-8 \end{gathered}

isolate the variable y


\begin{gathered} 6y=(x-5)^2+8 \\ y=((x-5)^2)/(6)+(8)/(6) \\ \\ y=((x-5)^(2))/(6)+(4)/(3) \end{gathered}

therefore

The inverse function is equal to


f^(-1)(x)=((x-5)^(2))/(6)+(4)/(3)

User GoonerForLife
by
4.7k points