Given
Current in the wires,
![\begin{gathered} I_1=5.0\text{ A} \\ I_2=10\text{ A} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/k1emv2jfdgt265xkh99my95y7lz7tkbaz4.png)
The distance between the wires,
![d=0.0040\text{ m}](https://img.qammunity.org/2023/formulas/physics/college/60qxe024o2ft5y75uuotewsm32fu5jnf5r.png)
To find:
The magnetic field between the wires.
Step-by-step explanation:
Let O be the mid point between the wires.
The magnetic field due to the wire carrying the current
![I_1=5\text{ A}](https://img.qammunity.org/2023/formulas/physics/college/il4fchduj3hsqoptay0u1jguzcflp6wsmd.png)
![\begin{gathered} B_1=(\mu_oI_1)/(2\pi((d)/(2))) \\ \Rightarrow B_1=(4\pi*10^(-7)*5)/(2\pi((0.0040)/(2))) \\ \Rightarrow B_1=2*10^(-7)(5)/(0.002) \\ \Rightarrow B_1=0.0005\text{ T} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/z5i4rinvukugcty9gjavry0559rojqmkj4.png)
The magnetic field goes into the plane of the paper.
Again,
The magnetic field due to the wire carrying the current
![I_2=10\text{ A}](https://img.qammunity.org/2023/formulas/physics/college/n2o8krmrk9pq58n21ycumnn4xqdkbi0bxa.png)
![\begin{gathered} B_2=(\mu_oI_2)/(2\pi((d)/(2))) \\ \Rightarrow B_2=(4\pi*10^(-7)*10)/(2\pi*0.002) \\ \Rightarrow B_2=0.001\text{ T} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/oaurtof426hgpviuj9912oo0zxois9ek98.png)
The magnetic fields goes out of the plane of the paper.
Thus the resultant magnetic field is:
![\begin{gathered} B=B_1-B_2 \\ \Rightarrow B=0.0005-0.001 \\ \Rightarrow B=0.0005\text{ T} \\ \Rightarrow B=-5*10^(-4)T \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/nd1kgdvaumiw3edvxoxfzhe2xzsp2bik1n.png)
Conclusion
Thus the required answer is:
![-5*10^(-4)T](https://img.qammunity.org/2023/formulas/physics/college/aj3n5w9a3ez8sp9shn0uxuhb3ywtn6i9gk.png)