![f(x)=7x^4-17x^2-12](https://img.qammunity.org/2023/formulas/mathematics/college/er7v0t6z9h8nv8pd2wlvuiv6yzrcgl94g3.png)
Factor f(x):
1- Rewrite -17x² as a difference:
![=7x^4+4x^2-21x^2-12](https://img.qammunity.org/2023/formulas/mathematics/college/51zlrs7dhkcz1gxc031g1u3irf08946t2b.png)
2- Factor x² as a common factor of the first two terms:
![=x^2(7x^2+4)-21x^2-12](https://img.qammunity.org/2023/formulas/mathematics/college/uyxt1norwds1x9d8151geua7thflwbagwg.png)
3- Factor -3 as common factor in the last two terms:
![=x^2(7x^2+4)-3(7x^2+4)](https://img.qammunity.org/2023/formulas/mathematics/college/bz9dtywl2h59ywwbisw5s10lmmw22jqi5h.png)
4-Factor (7x²+4):
![f(x)=(7x^2+4)(x^2-3)](https://img.qammunity.org/2023/formulas/mathematics/college/r79traq3d4rccnowv4vdu4g28j7aijytqf.png)
Make the equation equal to x:
![(7x^2+4)(x^2-3)=0](https://img.qammunity.org/2023/formulas/mathematics/college/c52fsqdqa8ko56w6ctvzlepl0u2qwop3ul.png)
If the product of two numbers is zero, then at least one of the factors is 0:
![\begin{gathered} 7x^2+4=0 \\ \\ x^2-3=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cf37o8nneuu6xb0srkn433jwo8f3hpmzc3.png)