a.
Consider that the volume (V) of a cone with radius 'R' and height 'H' is given by,
![V=(1)/(3)\pi R^2H](https://img.qammunity.org/2023/formulas/mathematics/college/ic5zezwxpajse4z73n0i23gh067tl8klr1.png)
Substitute the values,
![\begin{gathered} V=(1)/(3)\pi(4)^2(3) \\ V=16\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y73ewdvhtxb526mpjzclolws8nodinebn2.png)
Therefore, option b is the correct choice.
b.
Consider that the volume (V') of a cylinder with radius 'R' and height 'H' is given by,
![V^(\prime)=\pi R^2H](https://img.qammunity.org/2023/formulas/mathematics/college/k7e2w55al5fsecvs360igw11lv4dh149tp.png)
Solve for the ratio of volume of cone to that of cylinder as,
![(V)/(V^(\prime))=(((1)/(3)\pi R^2H))/((\pi R^2H))=(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/g46ha6w93iwuy4fzr9g1wb7hlsfe8yzmry.png)
Therefore, option c is the correct choice.