The reference angle of 117° is
![\theta=180^(\circ)-117^(\circ)=63^(\circ).](https://img.qammunity.org/2023/formulas/mathematics/college/ljscub6fyffnuzraqxmvl9zaf45jbfbqyq.png)
Therefore, we have to determine an angle in each quadrant with a reference angle of 63°. To illustrate the solution, we will use the following diagram as a reference:
From the above diagram, we get that:
![\begin{gathered} \alpha=63^(\circ), \\ \beta=180^(\circ)+63^(\circ), \\ \gamma=360^(\circ)-63^(\circ). \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/66cltls9d6f4891whpd8x13w7v6wt4nr9g.png)
Simplifying the above results, we get:
![\begin{gathered} \alpha=63^(\circ), \\ \beta=243^(\circ), \\ \gamma=297^(\circ). \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zgmerbwdcjhbeexodq4uc2cslwpk058x5u.png)
Finally, we get that, in the first quadrant the angle that has the same reference angle as 117° is:
![63^(\circ),](https://img.qammunity.org/2023/formulas/mathematics/college/vo7ozerl07buw22hv8373qrch3hnb1tpmu.png)
in the second quadrant is:
![117^(\circ),](https://img.qammunity.org/2023/formulas/mathematics/college/y0yi9bfl94cwnbeypx8g5sxl6nqw20iumu.png)
in the third quadrant is:
![243^(\circ),](https://img.qammunity.org/2023/formulas/mathematics/college/pclc1aqa75d7gk0s3wggx63qlmms1465jq.png)
and in the fourth quadrant is:
![297^(\circ.)](https://img.qammunity.org/2023/formulas/mathematics/college/1xczg39b40kzd6fbs8lq6zyw5r8j0n7u3z.png)
Answer:
![\begin{gathered} Quadrant\text{ I: 63}^(\circ), \\ Quadrant\text{ II: 117}^(\circ), \\ Quadrant\text{ III: 243}^(\circ), \\ Quadrant\text{ IV: 297}^(\circ). \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uh4ebunsyn79j8miadhsu02rxo5vu1i40k.png)