73.8k views
0 votes
Find the vertex focus directrix and axis of symmetry of the parabola

Find the vertex focus directrix and axis of symmetry of the parabola-example-1
User Lessie
by
8.8k points

1 Answer

3 votes

Step-by-step explanation


\mathrm{The\:vertex\:of\:an\:up-down\:facing\:parabola\:of\:the\:form}\:y=ax^2+bx+c\:\mathrm{is}\:x_v=-(b)/(2a)

Isolating y from the expression:

Switching sides:


-\left(y+1\right)=\left(x-2\right)^2
\mathrm{Divide\:both\:sides\:by\:}-1
(-\left(y+1\right))/(-1)=(\left(x-2\right)^2)/(-1)
y+1=-x^2+4x-4
\mathrm{Subtract\:}1\mathrm{\:from\:both\:sides}
y+1-1=-x^2+4x-4-1

Simplify:


y=-x^2+4x-5
\mathrm{The\:parabola\:params\:are:}
a=-1,\:b=4,\:c=-5
x_v=-(b)/(2a)
x_v=-(4)/(2\left(-1\right))

Remove parentheses:


=-(4)/(-2\cdot \:1)
\mathrm{Multiply\:the\:numbers:}\:2\cdot \:1=2
=-(4)/(-2)

Apply the fraction rule:


=-\left(-(4)/(2)\right)
\mathrm{Divide\:the\:numbers:}\:(4)/(2)=2
=-\left(-2\right)
x_v=2

Plugging in x_v into the expression:


y_v=-2^2+4\cdot \:2-5

Simplify:


y_v=-1
\mathrm{Therefore\:the\:parabola\:vertex\:is}
\text{ \lbrack VERTEX\rbrack --> }\left(2,\:-1\right)
\mathrm{If}\:a<0,\:\mathrm{then\:the\:vertex\:is\:a\:maximum\:value}
\mathrm{If}\:a>0,\:\mathrm{then\:the\:vertex\:is\:a\:minimum\:value}
a=-1
\mathrm{Maximum}\:\left(2,\:-1\right)

FOCUS:


A\:parabola\:is\:the\:locus\:of\:points\:such\:that\:the\:distance\:to\:a\:point\:\left(the\:focus\right)\:equals\:the\:distance\:to\:a\:line\:\left(the\:directrix\right)
A\:parabola\:is\:the\:locus\:of\:points\:such\:that\:the\:distance\:to\:a\:point\:\left(the\:focus\right)\:equals\:the\:distance\:to\:a\:line\:\left(the\:directrix\right)
\mathrm{and\:a\:focal\:length\:}\:|p|
\left(x-2\right)^2=-\left(y+1\right)

Switch sides:


-\left(y+1\right)=\left(x-2\right)^2
\mathrm{Factor\:}-1
\left(-1\right)\left(y+(-1)/(-1)\right)=\left(x-2\right)^2

Simplify:


\left(-1\right)\left(y+1\right)=\left(x-2\right)^2
\mathrm{Factor\:}4
4\cdot (-1)/(4)\left(y+1\right)=\left(x-2\right)^2

Simplify:


4\left(-(1)/(4)\right)\left(y+1\right)=\left(x-2\right)^2
\mathrm{Rewrite\:as}
4\left(-(1)/(4)\right)\left(y-\left(-1\right)\right)=\left(x-2\right)^2
\left(h,\:k\right)=\left(2,\:-1\right),\:p=-(1)/(4)
\mathrm{Parabola\:is\:symmetric\:around\:the\:y-axis\:and\:so\:the\:focus\:lies\:a\:distance\:}p\mathrm{\:from\:the\:center\:}
\left(2,\:-1\right)\mathrm{\:along\:the\:y-axis}
=\left(2,\:-1+\left(-(1)/(4)\right)\right)
\mathrm{Refine}
[FOCUS]-->\left(2,\:-(5)/(4)\right)

Directrix:


\mathrm{Parabola\:is\:symmetric\:around\:the\:y-axis\:and\:so\:the\:directrix\:is\:a\:line\:parallel\:to\:the\:x-axis,\:a\:distance\:}
-p\mathrm{\:from\:the\:center\:}\left(2,\:-1\right)\mathrm{\:y-coordinate}
y=-1-p
y=-1-\left(-(1)/(4)\right)
\mathrm{Refine}
y=-(3)/(4)

Axis of simmetry:


\mathrm{Parabola\:is\:of\:the\:form\:}4p\left(y-k\right)=\left(x-h\right)^2\mathrm{\:and\:is\:symmetric\:around\:the\:}y\mathrm{-axis}
\mathrm{Axis\:of\:symmetry\:is\:a\:line\:parallel\:to\:the\:}y\mathrm{-axis\:which\:intersects\:the\:vertex:}
x=2\text{ \lbrack Axis of simmetry\rbrack}

User Madcurie
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories