73.8k views
0 votes
Find the vertex focus directrix and axis of symmetry of the parabola

Find the vertex focus directrix and axis of symmetry of the parabola-example-1
User Lessie
by
5.2k points

1 Answer

3 votes

Step-by-step explanation


\mathrm{The\:vertex\:of\:an\:up-down\:facing\:parabola\:of\:the\:form}\:y=ax^2+bx+c\:\mathrm{is}\:x_v=-(b)/(2a)

Isolating y from the expression:

Switching sides:


-\left(y+1\right)=\left(x-2\right)^2
\mathrm{Divide\:both\:sides\:by\:}-1
(-\left(y+1\right))/(-1)=(\left(x-2\right)^2)/(-1)
y+1=-x^2+4x-4
\mathrm{Subtract\:}1\mathrm{\:from\:both\:sides}
y+1-1=-x^2+4x-4-1

Simplify:


y=-x^2+4x-5
\mathrm{The\:parabola\:params\:are:}
a=-1,\:b=4,\:c=-5
x_v=-(b)/(2a)
x_v=-(4)/(2\left(-1\right))

Remove parentheses:


=-(4)/(-2\cdot \:1)
\mathrm{Multiply\:the\:numbers:}\:2\cdot \:1=2
=-(4)/(-2)

Apply the fraction rule:


=-\left(-(4)/(2)\right)
\mathrm{Divide\:the\:numbers:}\:(4)/(2)=2
=-\left(-2\right)
x_v=2

Plugging in x_v into the expression:


y_v=-2^2+4\cdot \:2-5

Simplify:


y_v=-1
\mathrm{Therefore\:the\:parabola\:vertex\:is}
\text{ \lbrack VERTEX\rbrack --> }\left(2,\:-1\right)
\mathrm{If}\:a<0,\:\mathrm{then\:the\:vertex\:is\:a\:maximum\:value}
\mathrm{If}\:a>0,\:\mathrm{then\:the\:vertex\:is\:a\:minimum\:value}
a=-1
\mathrm{Maximum}\:\left(2,\:-1\right)

FOCUS:


A\:parabola\:is\:the\:locus\:of\:points\:such\:that\:the\:distance\:to\:a\:point\:\left(the\:focus\right)\:equals\:the\:distance\:to\:a\:line\:\left(the\:directrix\right)
A\:parabola\:is\:the\:locus\:of\:points\:such\:that\:the\:distance\:to\:a\:point\:\left(the\:focus\right)\:equals\:the\:distance\:to\:a\:line\:\left(the\:directrix\right)
\mathrm{and\:a\:focal\:length\:}\:|p|
\left(x-2\right)^2=-\left(y+1\right)

Switch sides:


-\left(y+1\right)=\left(x-2\right)^2
\mathrm{Factor\:}-1
\left(-1\right)\left(y+(-1)/(-1)\right)=\left(x-2\right)^2

Simplify:


\left(-1\right)\left(y+1\right)=\left(x-2\right)^2
\mathrm{Factor\:}4
4\cdot (-1)/(4)\left(y+1\right)=\left(x-2\right)^2

Simplify:


4\left(-(1)/(4)\right)\left(y+1\right)=\left(x-2\right)^2
\mathrm{Rewrite\:as}
4\left(-(1)/(4)\right)\left(y-\left(-1\right)\right)=\left(x-2\right)^2
\left(h,\:k\right)=\left(2,\:-1\right),\:p=-(1)/(4)
\mathrm{Parabola\:is\:symmetric\:around\:the\:y-axis\:and\:so\:the\:focus\:lies\:a\:distance\:}p\mathrm{\:from\:the\:center\:}
\left(2,\:-1\right)\mathrm{\:along\:the\:y-axis}
=\left(2,\:-1+\left(-(1)/(4)\right)\right)
\mathrm{Refine}
[FOCUS]-->\left(2,\:-(5)/(4)\right)

Directrix:


\mathrm{Parabola\:is\:symmetric\:around\:the\:y-axis\:and\:so\:the\:directrix\:is\:a\:line\:parallel\:to\:the\:x-axis,\:a\:distance\:}
-p\mathrm{\:from\:the\:center\:}\left(2,\:-1\right)\mathrm{\:y-coordinate}
y=-1-p
y=-1-\left(-(1)/(4)\right)
\mathrm{Refine}
y=-(3)/(4)

Axis of simmetry:


\mathrm{Parabola\:is\:of\:the\:form\:}4p\left(y-k\right)=\left(x-h\right)^2\mathrm{\:and\:is\:symmetric\:around\:the\:}y\mathrm{-axis}
\mathrm{Axis\:of\:symmetry\:is\:a\:line\:parallel\:to\:the\:}y\mathrm{-axis\:which\:intersects\:the\:vertex:}
x=2\text{ \lbrack Axis of simmetry\rbrack}

User Madcurie
by
5.0k points