SOLUTION:
Case: Similar shapes (Area of Rectangles)
Given:
Similar triangles ABCD and WXYZ.
|XY| = 6 in
Area of WXYZ = 24 sq in
|AD| = 24 in
Required: To find the Area of ABCD
Method:
Step 1: We find the length of side WX
![\begin{gathered} length* breadth\text{ = Area} \\ |XY\left|\text{ }*\right|WX\left|=\text{ 24}\right? \\ 6\text{ }*\left|WX\right|\text{ = 24} \\ |WX\left|\text{ =4 in}\right? \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d1l22str1tczqm1mkosh7w21cu5nbjd4dk.png)
Step 2: Use similar sides to get the width |AB| of ABCD
Since the scale factor is 4 from WXYZ and ABCD
![\begin{gathered} |AB|\text{ = 1 }*4 \\ \left|AB\right?\left|=\text{ 4 in}\right? \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4l89wcgar4ejg4i7kfomez6fq38hwlq63m.png)
Step 3: Now we find the Area of ABCD
![\begin{gathered} Area\text{ = \mid AB\mid }*\text{ \mid BD\mid} \\ Area\text{ = 24 }*\text{ 4} \\ Area\text{ = 96 sq in} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ps44jhwqec1whrl6pvclvvxoroymodfgzp.png)
Final answer:
The area of ABCD is 96 sq in