we have the equation

Simplify
Divide both sides by 360,000
so

Remember that
625=25^2
576=24^2
substitute

so
a^2=25 and b^2=24
we have the function f(x)
![f(x)=(b)/(a)\sqrt[]{a^2-x^2}](https://img.qammunity.org/2023/formulas/mathematics/college/t5mar30vjtg03uxla9mlwrtsdf6pctuoe2.png)
the point A is (15,f(15))
Calculate f(15)
![f(15)=\frac{\sqrt[]{24}}{\sqrt[]{25}}\sqrt[]{25^2-15^2}](https://img.qammunity.org/2023/formulas/mathematics/college/kak4dft0f9wi1wt8tp3g1nh3i9vttlfm41.png)
![f(15)=\frac{2\sqrt[]{6}}{5}\sqrt[]{400}](https://img.qammunity.org/2023/formulas/mathematics/college/2n95ijnyldc73yo77id6cv0b6ze09ylxo6.png)
simplify
![f(15)=8\sqrt[]{6}](https://img.qammunity.org/2023/formulas/mathematics/college/nme21282wjo2un0lewrf8fl1wm9jhbm38x.png)
the point A is
![A(15,\text{ 8}\sqrt[]{6})](https://img.qammunity.org/2023/formulas/mathematics/college/u3sd4su5ddxi9k8179mc18sky049y65qws.png)
Find the point B
B(20,f(20)
Calculate f(20)
![f(20)=\frac{\sqrt[]{24}}{\sqrt[]{25}}\sqrt[]{25^2-20^2}](https://img.qammunity.org/2023/formulas/mathematics/college/p7zgj7wcixtgm3moa6jjt2yfogl6d6102u.png)
![f(20)=6\sqrt[]{6}](https://img.qammunity.org/2023/formulas/mathematics/college/wniv8m4vkc90myd5lnv2woik82ktcgf38i.png)
the point B is
![B(20,6\sqrt[]{6})](https://img.qammunity.org/2023/formulas/mathematics/college/kf6d51vka8cahvzr4hj4rwdy5wk9zulvp3.png)
Determine the distance between A and B
Applying the formula to calculate the distance between two points
![d=\sqrt[\square]{(y2-y1)^2+(x2-x1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/t42uwhq5jpr9srsdp5ljh323ya0c3721co.png)
substitute the given values of A and B
![d_(AB)=\sqrt[\square]{(6\sqrt[]{6}-8\sqrt[]{6})^2+(20-15)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/7kqp9nh5qbf7ir9l4dot5jdab5zjyktey7.png)
![\begin{gathered} d_(AB)=\sqrt[\square]{24+25} \\ d_(AB)=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8v715deio8yl6sa12pu19rmx1p31kzjh3v.png)
therefore
the length of AB is 7 units