Using the data statement, we plot the following diagram:
We see that the angle of the result vector is:
![\theta_1=180\degree+\theta_2\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/n9o0rou5uw92iq9nq7fipqntlhtycdjn35.png)
The second angle can be computed using the trigonometric relation:
![\tan \theta_2=(OS)/(AS)\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/bzirqsmv70e1wdilcz1g9cs1voufdi5e1p.png)
Where:
• OS = opposite side to θ_2 = 780 m,
,
• AS = adjacent side to θ_2 = 360 m.
Replacing these values in the formula above, we have:
![\tan \theta_2=(780m)/(360m)=(13)/(6)\Rightarrow\theta_2=\arctan ((13)/(6))\cong65.22\degree.](https://img.qammunity.org/2023/formulas/mathematics/college/9fuv0kbfm0jyhl7mk5n9symsl12ftgkvxt.png)
So the resultant angle is:
![\theta_1=180\degree+\theta_2\cong180\degree+65.2\degree=245.2\degree.](https://img.qammunity.org/2023/formulas/mathematics/college/n0sa5gtxhq3bjs1hl4n86zozuabnu0ftiu.png)
Answer
The resultant angle is 245.2° to the nearest tenth.