Yes, this is a right triangle. B'(-2,0)
1) Given those coordinates let's plot that triangle:
Let's find the legs:
![\begin{gathered} d_(AC)=\sqrt[]{(8-2)^2+(-5-3)^2}=10 \\ d_(BC)=\sqrt[]{(8-6)^2+(-5-6)^2}=5\sqrt[]{5} \\ d_(AB)=\sqrt[]{(6-2)^2+(6-3)^2}=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i10wa00ymv0aufutrk8kkhmlfwzcatpqyc.png)
Let's test whether this is or not a Right Triangle, by using the Pythagorean Theorem:
![\begin{gathered} (5\sqrt[]{5})^2=10^2+5^2 \\ 125=100+25 \\ 125=125\text{ TRUE} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7i7ywu82h6cboqdgsgmb3rdlbsq3b50tbr.png)
Hence, this is a right triangle.
b) Reflecting that triangle across leg AC, we have:
Counting to the left of Vertix A, 2 units to the left we have the Vertix B' and since its a reflection across AC, A = A' and C=C'
Therefore
B'(-2,0)