105k views
0 votes
I need help with this practice, having trouble solving it It is from my ACT prep guide

I need help with this practice, having trouble solving it It is from my ACT prep guide-example-1
User Datta
by
4.0k points

1 Answer

5 votes

Answer:


\cos ((x)/(2))=\frac{\sqrt[]{30}}{10{}}

Explanation:

Since the angle cosx=-2/5 is located in the third quadrant. Graph it and solve using the trigonometric ratios:


\begin{gathered} \text{ Trigonometric identity:} \\ cos\mleft(x/2\mright)=\sqrt[]{(1+\cos x)/(2)} \end{gathered}

Now, for the exact value of cos(x/2); substitute the given information:


\begin{gathered} \cos ((x)/(2))=\sqrt[]{(1+(-(2)/(5)))/(2)} \\ \cos ((x)/(2))=\frac{\sqrt[]{30}}{10{}} \end{gathered}

I need help with this practice, having trouble solving it It is from my ACT prep guide-example-1
User JayNCoke
by
4.9k points