Given data
(14)
*The given constant velocity of the plane take off is v = 175 km/ h = 48.61 m/s
*The given angle is
![\theta=35.5^0](https://img.qammunity.org/2023/formulas/physics/college/rv1aukkflhgznyc2dq7mlrbbbmyrgnr891.png)
*The given time is t = 48.0 s
The vertical component of the velocity is calculated as
![\begin{gathered} v_y=v_{}\sin \theta-gt \\ =(48.61)*\sin 35.5-(9.8)(48.0) \\ =-442.17\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/r8rozzrhn8mku0akp3d24yvksl37fhsx2t.png)
The horizontal component of the velocity is calculated as
![\begin{gathered} v_x=v\cos \theta \\ =(48.61)*\cos 35.5^0 \\ =39.57\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/qvfn1d5ij0b8g7k7ldlr5ijfsn5esvqd0r.png)
The formula for the velocity of the plane is given as
![v=\sqrt[]{(v_x_{})^2+(v_y)^2_{}}](https://img.qammunity.org/2023/formulas/physics/college/psyjt2s0rx522owf9e0w8mx495u3xnoohw.png)
Substitute the known values in the above expression as
![\begin{gathered} v=\sqrt[]{(39.57)^2+(-442.17)^2} \\ =443.93\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ww9q73d6oogqxqdn8nccaxfgqstodq6kwx.png)
Hence, the velocity of the plane in meter per second (m/s) is v = 443.93 m/s