The formula for calculate the distance between two points is the one shown below:
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/be685jmxw05hm2tq94m5iuge2xjynn1hfn.png)
In this case, given the following points:

You can set up that:

Now you can substitute values into the formula:
![d=\sqrt[]{(-6-8)^2+(-1-10)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/a80th2ect9vd46kaf6k72kxnd7zai2e7bh.png)
Finally, evaluating and rounding to the nearest hundredth, you get:
![\begin{gathered} d=\sqrt[]{317} \\ d\approx17.80 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j7w7pkcph7n35jcznoa3ily2g4ev6o9wus.png)
The answer is:
