The equation of the circle given by the problem is:
![x^2-4x+y^2-10y=-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/cn60shcyr1qyskar3rre2yqps7qnmaa3wg.png)
Step to find the radius:
Step 1. Rearrange the terms from the greatest exponent to the lowest exponent:
![x^2+y^2-4x-10y=-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/sr99nqm4yvr31l8h81mmv3gae7xuygx4z6.png)
Step 2. We need for this equation to be equal to 0, so we add 4 to both sides:
![\begin{gathered} x^2+y^2-4x-10y+4=-4+4 \\ x^2+y^2-4x-10y+4=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/exqq65hx031xktvmrhw30snwnl9rjhy20y.png)
Step 3. Compare the last equation with the general equation:
![x^2+y^2+Dx+Ey+F=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/y8b95lsmeta6ihwa7h15lsiowbj1jyas3y.png)
Comparing the equations we find the values for D, E, and F:
![\begin{gathered} D=-4 \\ E=-10 \\ F=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/aottui7gcciuxx0rprg803mofj4bcb2jfn.png)
Step 4. With the values of D and E, find the values of a and b defined as follows:
![\begin{gathered} a=-(D)/(2) \\ b=-(E)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jxvc59avts9n4yl7hxkguiejoesm93cfdl.png)
Substituting D=-4 and E=-10:
![\begin{gathered} a=-((-4))/(2)=(4)/(2)=2 \\ b=-((-10))/(2)=(10)/(2)=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9hvlglybnwzs4u253dulewsde3cbr8fyd1.png)
a=2 and b=5.
Step 5. The formula to find the radius is:
![r=\sqrt[]{a^2+b^2-F}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t7uz1bfghltbkaa2rx24mbf0dqo0yfiubr.png)
Substituting the values of a, b and F:
![r=\sqrt[]{2^2+5^2-4}](https://img.qammunity.org/2023/formulas/mathematics/high-school/62oibbjem5kcrhjjm5u9l5nc0x9zwmg0w7.png)
Solving the operations:
![r=\sqrt[]{4+25-4}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7mhqdsjrmo1gwo6fsy3svuxhosrq5p5ff6.png)
![r=\sqrt[]{25}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jal2rtfygjhqd2b8fozm09ok0c5amaskmr.png)
![r=5](https://img.qammunity.org/2023/formulas/mathematics/college/6oixphzk4846p4c5krw7qjy4x0er303ziw.png)
The radius is equal to 5.
Answer: r=5