Answer:
![y\text{ =- }\sqrt[]{(x+4)/(3)\text{ }}\text{ -2 , x }\ge\text{-4}](https://img.qammunity.org/2023/formulas/mathematics/college/ov5s7pbotaxgkuym6lc3cxhl21cthm34y2.png)
Step-by-step explanation:
We start by getting the inverse of the function
Let g(x) = y
We go ahead to make x the subject of the formula as follows:
![\begin{gathered} y=3(x+2)^2\text{ - 4} \\ y+4=3(x+2)^2 \\ (y+4)/(3)=(x+2)^2 \\ \\ x\text{ + 2 = }\sqrt[]{(y+4)/(3)} \\ \\ x\text{ = }\sqrt[]{(y+4)/(3)\text{ }}\text{ -2} \\ \\ \text{ We have finally:} \\ y\text{ = }\sqrt[]{(x+4)/(3)\text{ }}\text{ - 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8bbh8ipx72cb50fbcnh3f1ku6ofb8y024w.png)
Now,let us look at the restricton
The restriction are values that are less tahan or equal to -2
Values less than -2 are negative,so we pick the neagtive values and thus we have:
![y\text{ =- }\sqrt[]{(x+4)/(3)\text{ }}\text{ -2 , x }\ge\text{-4}](https://img.qammunity.org/2023/formulas/mathematics/college/ov5s7pbotaxgkuym6lc3cxhl21cthm34y2.png)
We are having a new restriction because x is inside a square root