124k views
3 votes
Use the properties of logarithms to expand and simplify the expression ?

Use the properties of logarithms to expand and simplify the expression ?-example-1
User Clauziere
by
8.1k points

1 Answer

3 votes

Using the following properties:


\begin{gathered} \log _z(x)^y=y\log _z(x) \\ \log _z((x)/(y))=\log _z(x)-\log _z(y) \\ \sqrt[z]{x^y}=x^{(y)/(z)} \\ \log _z(x\cdot y)=\log _z(x)+\log _z(y) \end{gathered}

so:


\begin{gathered} \log _(12)(\sqrt[3]{(12+x)/(144x)})=\log _(12)((12+x)/(144x))^{(1)/(3)}=(1)/(3)\log _(12)((12+x)/(144x)) \\ \\ so\colon \\ (1)/(3)\log _(12)((12+x)/(144x))=(1)/(3)\log _(12)(12+x)-(1)/(3)\log (144x) \\ \\ (1)/(3)\log _(12)(12+x)-(1)/(3)\log (144x)=(1)/(3)\log _(12)(12+x)+(1)/(3)\log (144)-(1)/(3)\log _(12)(x) \end{gathered}

Therefore, the answer is:


\log _(12)(\sqrt[3]{(12+x)/(144x)})=(1)/(3)\log _(12)(12+x)+(2)/(3)-(1)/(3)\log _(12)(x)

User Peekay
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories