Step-by-step explanation
From the statement, we know that:

(a) Summing the given limits, applying the distributive property for the limit, we get:

Using this result in the first given limit, we get:
![\begin{gathered} \lim_(x\to2)\lbrack f(x)+g(x)]=7, \\ \lim_(x\to2)f(x)+\lim_(x\to2)g(x)=7, \\ 2+\lim_(x\to2)g(x)=7, \\ \lim_(x\to2)g(x)=7-2=5. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oueeynzhwumts3svu8f5bdfyh0962n7qpj.png)
(b) Putting the limit inside the square root and in the denominator, and then using the results from above, we get:
![\begin{gathered} \lim_(x\to2)\lbrack(√(g(x)+4))/(f(x))] \\ =(\lim_(x\to2)\lbrack√(g(x)+4)])/(\lim_(x\to2)f(x)) \\ =\frac{\sqrt{\lim_(x\to2)g(x)+4}}{\lim_(x\to2)f(x)} \\ =(√(5+4))/(2) \\ =(3)/(2). \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/edrugn6u38avewhw3qxml3g1zmglvv8h6g.png)
(c) Putting the limit inside the exponent of the e power, and using the results from above, we get:

(d) Using the results from above, we get:
![\begin{gathered} \lim_(x\to2)\lbrack(f(x))^3-2g(x)+22] \\ =(\lim_(x\to2)f(x))^3-2\lim_(x\to2)g(x)+\lim_(x\to2)22 \\ =2^3-2\cdot5+22 \\ =20. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5nk93hmrcuvobcc4jpknzcwf1olr0uik3k.png)
Answer
a. 5
b. 3/2
c. e^(-9)
d. 20