Since (x + 1), (x - 4) are factors of
![x^3+ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/college/hmae1u93rha6tdlaziqt9x3v4yfotlty86.png)
That means if x = -1 make the polynomial equal to 0, and x = 4 also make it = 0
Then we can make 2 equations from these informations
![\begin{gathered} x=-1 \\ (-1)^3+a(-1)^2+b(-1)+c=0 \\ -1+a-b+c=0 \\ a-b+c=1\rightarrow(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/svtba902f4t86o9ma2tben0oy3b24kk6j1.png)
![\begin{gathered} x=4 \\ (4)^3+a(4)^2+b(4)+c=0 \\ 64+16a+4b+c=0 \\ 16a+4b+c=-64\rightarrow(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2yz5a7exudw8uitwsax3jn7xr6ljhgexav.png)
Since when dividing it by x + 2 the remainder is 6
That means when substitute x by -2 the answer will be 6
![\begin{gathered} (-2)^3+a(-2)^2+b(-2)+c=6 \\ -8+4a-2b+c=6 \\ 4a-2b+c=6+8 \\ 4a-2b+c=14\rightarrow(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j8vfsurmcsfaukq6tieh28smigp34anzl7.png)
Now, we have a system of equations to solve it to find a, b, c
We will Subtract equation (1) from equation (2) to eliminate c
![\begin{gathered} (16a-a)+(4b--b)+(c-c)=(-64-1) \\ 15a+5b=-65 \\ (15a)/(5)+(5b)/(5)=(-65)/(5) \\ 3a+b=-13\rightarrow(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cyb2i3y6a9oos2qilgnv6h3np1y9s7ayfm.png)
Subtract equation (1) from equation (3) to eliminate c
![\begin{gathered} (4a-a)+(-2b--b)=(14-1) \\ 3a-b=13\rightarrow(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yq596qpr9eqzrx8gbyo8f8xk1g168t5uy8.png)
Subtract equation (5) from equation (4) to eliminate a
![\begin{gathered} (3a-3a)+(b--b)=(-13-13) \\ 0+2b=-26 \\ 2b=-26 \\ (2b)/(2)=(-26)/(2) \\ b=-13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o1brog7guxfvpzlf9mnzj4465jb9rqlpeo.png)
Substitute the value of b in equation (4) to find a
![\begin{gathered} 3a+(-13)=-13 \\ 3a-13+13=-13+13 \\ 3a=0 \\ a=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r03zw11psqu87atzsnj4m2mw5y33ihiwsy.png)
Substitute the values of a and b in equation (1) to find c
![\begin{gathered} 0-(-13)+c=1 \\ 0+13+c=1 \\ 13+c=1 \\ 13-13+c=1-13 \\ c=-12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k8ftq195pz1lhwwkuascgml1z6hveslfq3.png)
The values of a, b, c are
a = 0
b = -13
c = -12