33.0k views
1 vote
Arrange the geometric series from least to greatest based on the value of their sums. 5 5 ΣΠ2) 4-1 Σ3-1 Σ 26-1 Σ2(3):-1! =1 < Λ

1 Answer

7 votes

Determine the sum of each geometric series.


\begin{gathered} \sum ^5_(k\mathop=1)3(2)^(k-1)=3\cdot(2)^0+3\cdot(2)^1+3\cdot(2)^2+3\cdot(2)^3+3\cdot(2)^4 \\ =3+6+12+24+48 \\ =93 \end{gathered}
\begin{gathered} \sum ^5_(k\mathop=1)3^(k-1)=3^0+3^1+3^2+3^3+3^4 \\ =1+3+9+27+81 \\ =121 \end{gathered}
\begin{gathered} \sum ^7_(k\mathop=1)2^(k-1)=2^0+2^1+2^2+2^3+2^4+2^5+2^6 \\ =1+2+4+8+16+32+64 \\ =127 \end{gathered}
\begin{gathered} \sum ^4_(k\mathop=1)2\cdot(3)^(k-1)=2\cdot(3)^0+2\cdot(3)^1+2\cdot(3)^2+2\cdot(3)^3 \\ =2+6+18+54 \\ =80 \end{gathered}

Thus sums can be arranges from smallest to largest as,


undefined

User Aram Kocharyan
by
8.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.