This is an ideal gas problem. We can use the following formula (combined gas law):
![(P_1V_1)/(T_1)=(P_2V_2)/(T_2),](https://img.qammunity.org/2023/formulas/chemistry/college/2mvl0pmwvv07a7h44tbptz2c5jkxmoeaym.png)
where P represents pressure, V volume, and T temperature. Subindex 1 indicates the initial state and subindex 2 indicates the final state.
We have the following data:
![\begin{gathered} P_1=1.21\text{ atm} \\ P_2=2.52\text{ atm} \\ V_1=3.75\text{ L} \\ V_2=1.72\text{ L} \\ T_1=293\text{ K} \\ T_2=? \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/7n62m63zjykklsmz697gueywhkot9cco41.png)
So, we have to clear the final temperature (T2) in the formula of combined gas law and we're going to obtain:
![T_2=(P_2V_2T_1)/(P_1V_1)](https://img.qammunity.org/2023/formulas/chemistry/college/erio4pn3xlbnqfq5ttyetq1kfxn7b3zpt1.png)
The final step is to replace all the given data:
![\begin{gathered} T_2=\frac{2.52\text{ atm}\cdot1.72L\cdot293K}{1.21\text{ atm}\cdot3.75L}, \\ T_2=279.885\text{ K}\approx280K. \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/djeognn08824cwa2dvv09mm7ks3ge5ija4.png)
The answer is that the final temperature would be 280 K.