We are given the following expression:
![(2x^3)^4](https://img.qammunity.org/2023/formulas/mathematics/college/uqc6dystxmaeup9dv61r8vcraezyidzvq5.png)
To simplify we will use the following property of exponent:
![(ab)^c=a^cb^c](https://img.qammunity.org/2023/formulas/mathematics/college/n9oirpbk08tq5r4u7po8e2fkmpdac1wymc.png)
Applying the property we get:
![(2x^3)^4=2^4(x^3)^4](https://img.qammunity.org/2023/formulas/mathematics/college/qbw87jxn9qy2nqyrz1ds1q0r1l17dfur3r.png)
on the right side of the expression we will use the following property of exponents:
![(a^b)^c=a^(bc)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bil89kfwypg1os2eawokw4umy0x09casvp.png)
Applying the property we get:
![2^4(x^3)^4=2^4x^(12)](https://img.qammunity.org/2023/formulas/mathematics/college/lwgahwztf6i31m3cjca7ema01fewdylnjw.png)
Now, we solve the left side of the resulting expression:
![2^4x^(12)=16x^(12)](https://img.qammunity.org/2023/formulas/mathematics/college/pr9ebqfw1a5m3b3w5qxz2bgybv8odd7e7v.png)
And since we can't simplify any further this is the result.