Answer:
[(3, 1), (5, 6)]
[(4, -2), (0, -8)]
[(5, 4), (2, 0)]
[(-1, -3), (-1, -7)]
Step-by-step explanation:
The distance between two points (x1, y1) and (x2, y2) can be calculated as:
![\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2_{}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jo8k8qjb7jxwber017a1ccua8u6grvkai1.png)
So, if we have the expression:
![\sqrt[]{(5-3)^2+(6-1)^2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/uo7dd9ou6aabexkm7llgrutvbgelocyhad.png)
The coordinates of (x1, y1) are (3, 1) and the coordinates of (x2, y2) are (5, 6)
In the same way, for the other expression we get:
![\begin{gathered} \sqrt[]{(0-4)^2+(-8+2)^2}=\sqrt[]{(0-4)^2+(-8-(-2))^2} \\ \to(x_(1,)y_1)=(4,-2) \\ \to(x_(2,)y_2)=(0,-8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/p0wb9h9wg81z1jumbow2hmly8i00051u93.png)
![\begin{gathered} \sqrt[]{(2-5)^2+(0-4)^2} \\ \to(x_(1,)y_1)=(5,4) \\ \to(x_2,y_2)=(2,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/38dx378xeerci2tfunjrdw02ixj6hdgjnd.png)
![\begin{gathered} \sqrt[]{(-1+1)^2+(-7_{}+3)^2}=\sqrt[]{(-1-(-1))^2+(-7_{}-(-3))^2} \\ \to(x_1,y_1)=(-1,-3) \\ \to(x_2,y_2)=(-1,-7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rf43uvnj2lgxt5xbhjmtk1wniy8cj8338w.png)
So, the answer in order are:
[(3, 1), (5, 6)]
[(4, -2), (0, -8)]
[(5, 4), (2, 0)]
[(-1, -3), (-1, -7)]