The first step is to write the system of equations as an augmented matrix:
![\begin{bmatrix}{4} & {-5} & +4 & {-67} \\ {5} & {-4} & -3 & {-12} \\ {1} & {-5} & +0 & {-36} \\ {} & {} & {} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/s9np0f1mmowb0tjpgrb80du4mvticsu70h.png)
The next step is to let the first number at the mid-row to zero, then let
R2-5/4*R1->R2
![\begin{bmatrix}{4} & {-5} & +4 & {-67} \\ {0} & {9/4} & -8 & {287/4} \\ {1} & {-5} & +0 & {-36} \\ {} & {} & {} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vcynyzgg0co23s6kust080pu08ni48i7bo.png)
Now, let's convert the first number in the last row to 0, then:
R3-1/4*R1->R3
![\begin{bmatrix}{4} & {-5} & +4 & {-67} \\ {0} & {9/4} & -8 & {287/4} \\ {0} & {-15/4} & -1 & {-77/4} \\ {} & {} & {} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ns0pbv1mine3bbt3sa452papndrb9sxb89.png)
Let's convert the first number in the first row to 1, then:
1/4*R1->R1
![\begin{bmatrix}{1} & {-5/4} & +1 & {-67/4} \\ {0} & {9/4} & -8 & {287/4} \\ {0} & {-15/4} & -1 & {-77/4} \\ {} & {} & {} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w1cseqqxvqx71krhmrtsocu15b7rv7c7qb.png)
Now, let's convert the second number in the last row to zero:
R3-(-5/3)R2->R3
![\begin{bmatrix}{1} & {-5/4} & +1 & {-67/4} \\ {0} & {9/4} & -8 & {287/4} \\ {0} & {0} & -43/3 & {301/3} \\ {} & {} & {} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/al07rh7p5ee86psdy3ra5fsmejbpskb4o8.png)
Now let's convert the third number in the last row to 1:
(-3/43)R3->R3
![\begin{bmatrix}{1} & {-5/4} & +1 & {-67/4} \\ {0} & {9/4} & -8 & {287/4} \\ {0} & {0} & +1 & {-7} \\ {} & {} & {} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zfj4dfb7waghcb2wjnusqc5nkl8663p1lp.png)
And finally, convert the second number in the mid-row to 1:
(4/9)*R2->R2
![\begin{bmatrix}{1} & {-5/4} & +1 & {-67/4} \\ {0} & {1} & -32/9 & {287/9} \\ {0} & {0} & +1 & {-7} \\ {} & {} & {} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cvs23qmj39y3f9ifvl75qjy19dj2b1m917.png)
Now, we obtained the next equations:
![\begin{gathered} x-(5)/(4)y+z=-67/4\text{ Equation (1)} \\ y-(32)/(9)z=287/9\text{ Equation (2)} \\ z=-7\text{ Equation (3)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3d6cp3b2294isiflrdwqxigijw5m84tnbt.png)
Replace equation 3 into equation 2 and solve for y:
![\begin{gathered} y-(32)/(9)\cdot(-7)=(287)/(9) \\ y+(224)/(9)=(287)/(9) \\ y=(287)/(9)-(224)/(9) \\ y=(63)/(9) \\ y=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/iadbirvmqp2n0td2gr11cj6tes38e7sedu.png)
Now, replace x and y in equation 1 and solve for x:
![\begin{gathered} x-(5)/(4)\cdot7+(-7)=-(67)/(4) \\ x-(35)/(4)-7=-(67)/(4) \\ x=-(67)/(4)+(35)/(4)+7 \\ x=(-32)/(4)+7 \\ x=-8+7 \\ x=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w7w4k5uaiikh0re7ruf04y92ihyx6v5bpx.png)
Therefore, the solution set is: (-1, 7, -7)