Answer:
The equation of the line is:
![y=-(1)/(3)x-1](https://img.qammunity.org/2023/formulas/mathematics/college/r9qxpij6aqmrp2jvqv5xdvcogvxq6nqs75.png)
Step-by-step explanation:
Given that the line is parallel to the line;
![y=-(1)/(3)x-2](https://img.qammunity.org/2023/formulas/mathematics/college/o8kau7uultoh0yc5mnpqv8eddmmm7rhvlc.png)
Since the two lines are parallel, they must have the same slope.
So, the slope of the line is;
![m=-(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vy64mdjniypv9sfu22874ekdqjkryr3ckz.png)
Also, given that the line passes through the point;
![(x_1,y_1)=(9,-4)](https://img.qammunity.org/2023/formulas/mathematics/college/65s3ehi1r7w45gmj1k2nraofyc3kt3omt1.png)
Applying the point-slope equation;
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
substituting the given values, we have;
![\begin{gathered} y-(-4)=-(1)/(3)(x-9) \\ y+4=-(1)/(3)x+(1)/(3)(9) \\ y+4=-(1)/(3)x+3 \\ y=-(1)/(3)x+3-4 \\ y=-(1)/(3)x-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jra2xbqibehlwah3g3sutulu5ljvv3hq5u.png)
Therefore, the equation of the line is;
![y=-(1)/(3)x-1](https://img.qammunity.org/2023/formulas/mathematics/college/r9qxpij6aqmrp2jvqv5xdvcogvxq6nqs75.png)