Check the validity of each equation using the properties of the real numbers to see if they are true or false.
A
Starting with the expression:
![(m-1)(1+m+m^2)](https://img.qammunity.org/2023/formulas/mathematics/college/5suof2g8loynulz3buigj3bepqplovsdul.png)
Use the distributive property to expand the second factor:
![\begin{gathered} (m-1)(1+m+m^2) \\ =(m-1)(1)+(m-1)(m)+(m-1)(m^2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pkfmd54ufgii5eeab5istl218grsn11997.png)
Use the same property to expand the factor (m-1) in each term. Simplify the expression:
![\begin{gathered} (m-1)(1)+(m-1)(m)+(m-1)(m^2) \\ =(m-1)+(m\cdot m-1\cdot m)+(m\cdot m^2-1\cdot m^2) \\ =m-1+m^2-m+m^3-m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pvtdxtxou9eriu9f6f8upmikbtmd4xxubo.png)
Notice that the term m cancels out with the term -m, and the term m^2 cancels out with the term -m^2. Therefore:
![m-1+m^2-m+m^3-m^2=-1+m^3](https://img.qammunity.org/2023/formulas/mathematics/college/m1bqltk9rilwteqhb66nmu4vdhzv3qbn5i.png)
Therefore:
![(m-1)(1+m+m^2)=m^3-1](https://img.qammunity.org/2023/formulas/mathematics/college/f8rn294zwwiur5g3pptfkyjlx8nt3474a0.png)
Therefore, the equation A is true.
B
Expand the term (n+3)^2 and add 2n to see if it is equal to 8n+13.
![\begin{gathered} (n+3)^2+2n \\ =(n^2+2\cdot3\cdot n+3^2)+2n \\ =(n^2+6n+9)+2n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4ba5bn78geu0jumtmxsctwkygvyz6etfl0.png)
Add the like terms 6n and 2n:
![\begin{gathered} (n^2+6n+9)+2n \\ =n^2+8n+9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x2c4h5jkphw71ft8hjvrx92lj1wqvnbaba.png)
Which cannot be equal to 8n+13 since there is a quadratic term.
Therefore, the equation B is false.