To determine the area of the figure, we will compute the area of the parallelogram and the area of the trapezoid.
Recall that the area of a parallelogram is given by the following formula:
![A=base*height.](https://img.qammunity.org/2023/formulas/mathematics/college/wirqfa6z60ydv4hf9npbew5g1ivvs1vn98.png)
Therefore, the area of the parallelogram is:
![A=14cm*23cm=322cm^2.](https://img.qammunity.org/2023/formulas/mathematics/college/ysp0ljsqj24zoq2nkvdbt07qyz5nrgrh1f.png)
Now, the area of a trapezoid is given by the following formula:
![A=(base+Base)/(2)*height.](https://img.qammunity.org/2023/formulas/mathematics/college/at4v4e4bzz4py77ashqh2oowuhk4yj7r3a.png)
Therefore, the area of the trapezoid is:
![A=(34cm+15cm)/(2)*19cm=465.5cm^2](https://img.qammunity.org/2023/formulas/mathematics/college/wynxahgkwrhsigjipbz38gkirxxrqxc11p.png)
Finally, we get that the area of the whole figure is:
![322cm^2+465.5cm^2=787.5cm^2.](https://img.qammunity.org/2023/formulas/mathematics/college/4ocfcsgnu6ldsfftid03u84lepw0r07rer.png)
Answer:
![\begin{equation*} 787.5cm^2. \end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/zne4eis0g3899ras3r3in5q612gaypfwg6.png)