Given data:
The sum of the first 10 terms of an arithmetic progression = 40
The first term is -5
Using the formula to get the sum of an arithmetic term
![S_n=(n)/(2)\lbrack2a+(n-1)d\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/76nkv5ykqu7d92x7lemsa01isppofpcc2v.png)
from the above formula
![\begin{gathered} a=-5 \\ n=10 \\ S_n=40 \\ d\text{ is unknown} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eo3plxcmd14yhlv7w2bxu1omuqguqt11rg.png)
Method: substitute the values and make d the subject of the formula
![40=(10)/(2)\lbrack2*-5+(10-1)* d\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/sgqzen0ymunyk4c07qnmi04a8120lvxdaj.png)
=>
![40=5(-10+9d)](https://img.qammunity.org/2023/formulas/mathematics/college/l1o9ik7ijgbc6nbosq56r6je7ryjgxhmv2.png)
=> divide both sides by 5
![(40)/(5)=(5(-10+9d))/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/j3mwhcnbphj05bh549rm96x5omr4lor9ct.png)
=>
![8=-10+9d](https://img.qammunity.org/2023/formulas/mathematics/college/c11mkhrolh7ikv4hcyx58xr05a5171g9yt.png)
=> collect like terms
9d=10+8
=>
9d=18
=>Divide both sides by 9
![d=(18)/(9)=2](https://img.qammunity.org/2023/formulas/mathematics/college/ye2l3nc0dii9py6ez45dtares9oy072agl.png)
Therefore the common difference is 2