172k views
2 votes
Need help with these two questions number 8 and number 9 please

Need help with these two questions number 8 and number 9 please-example-1

1 Answer

3 votes

ANSWER


\text{ x}^3\text{ - 3x}^2\text{ + 3x - 5}

Step-by-step explanation

Given that;

The roots of the polynomial function are zeros 1, 2i - 1

Recall that, since 2i - 1 is a root, then 2i + 1 is also a root


\text{ \lparen x - 1\rparen }\lbrack x\text{ - \lparen2i - 1\rparen}\rbrack\text{ }\lbrack x\text{ - \lparen2i + 1\rparen}\rbrack

Expand the brackets


\begin{gathered} \text{ \lparen x - 1\rparen }\lbrack\text{\lparen x - 1\rparen}^2\text{ -\lparen2i\rparen}^2\rbrack \\ \text{ \lparen x - 1\rparen}^\text{ }\lbrack(x\text{ - 1\rparen}^2\text{ - 4i}^2\rbrack \\ \text{ \lparen x - 1\rparen }\lbrack\text{ x}^2\text{ - 2x + 1\rparen- 4i}^2 \\ \text{ Recall, }√(-1)\text{ = i} \\ \text{ Hence, i}^2\text{ = -1} \\ \text{ \lparen x - 1\rparen\lparen x}^2\text{ - 2x + 1 + 4\rparen } \\ \text{ \lparen x - 1\rparen\lparen x}^2\text{ - 2x + 5\rparen} \\ \text{ x}^3\text{ - 2x}^2\text{ + 5x - x}^2\text{ - 2x - 5} \\ \text{ x}^3\text{ - 3x}^2\text{ + 3x - 5} \end{gathered}

User Natli
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories